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Blockchain Technology

BLOCKCHAIN

Decentralized shared ledger of transactions

Applications: Supply chain management,
Internet of things,

Cryptocurrency (Crypto)

Examples: Bitcoin, Ethereum, etc.
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Blockchain Technology

BLOCKCHAIN

Crypto key provide ownership of digital assets.

There are public and private keys.
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Blockchain Technology

BLOCKCHAIN

Crypto wallets store crypto keys.
Cold wallets are often small and portable

Hot
wallet

Cold
wallet
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Bitcoin and Ethereum wallets
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Bitcoin and Ethereum wallets

Computes a public key given a private key
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Bitcoin and Ethereum wallets

Various attacks targeted Elliptic curve cryptography (ECC) algorithm.
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SECP256K1

SECP256K1

Elliptic curve point addition (ECPA) Elliptic curve point doubling (ECPD) Elliptic curve point multiplication (ECPM)

R = P + Q R = 2P R = k*P = ∑ 𝑷𝒌
𝒊ୀ𝟏
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Key vulnerability in Montgomery ladder ECPM

Private key bit = 1

Private key bit = 0

Power consumption pattern and
execution time discrepancy
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Objectives

• To secure SECP256K1 against side-channel analysis (SCA) attack.
Complete addition equation
Temporary registers
Parallel operations

• To minimize resources utilized by SECP256K1.
Efficiently reusing modules
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Use equations to perform ECPA

Avoid the branching caused by SECP256K1 EC addition operation
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Use temporary registers in ECPM

Private key bit = 1

Private key bit = 0

Both branches perform addition and doubling of the same registers
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Use parallel operation in hardware implementation

ECPA
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1 ECPM done in projective coordinates.
2 Binary inversion done at the end.
3 ECPA is done with two modules in

parallel.
4 Registers reused to achieve minimum

area.
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SECP256K1 implementation results
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Power side channel analysis
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Power for two different inputs of SECP256K1

privet key 1
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MSE = 0.001840 => No significant difference
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Conclusion

• Temporary registers and parallel operation used to mitigate SCA.
• MSE is small, suggesting protection against differential power analysis.
• Proposed architecture uses few resources.
• Future: Hardware architecture for a crypto wallet.
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Thank you!
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